翻訳と辞書
Words near each other
・ Birkigsbach
・ Birkigt
・ Birkigt (Freital)
・ Birkilane Department
・ Birkin
・ Birkin (disambiguation)
・ Birkin (surname)
・ Birkin bag
・ Birkin baronets
・ Birkin Cars
・ Birkin's Bend
・ Birkir Bjarnason
・ Birkir Hólm Guðnason
・ Birkir Jón Jónsson
・ Birkeland Church
Birkeland current
・ Birkeland, Aust-Agder
・ Birkeland, Hordaland
・ Birkelandodden
・ Birkeland–Eyde process
・ Birkelane Arrondissement
・ Birkelunden
・ Birken
・ Birken Forest Buddhist Monastery
・ Birken, British Columbia
・ Birken-Honigsessen
・ Birkenau (disambiguation)
・ Birkenau (Odenwald)
・ Birkenberg
・ Birkenberg (Ohm Hills)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Birkeland current : ウィキペディア英語版
Birkeland current

A Birkeland current is a set of currents that flow along geomagnetic field lines connecting the Earth’s magnetosphere to the Earth's high latitude ionosphere. In the Earth’s magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field and by bulk motions of plasma through the magnetosphere (convection indirectly driven by the interplanetary environment). The strength of the Birkeland currents changes with activity in the magnetosphere (e.g. during substorms). Small scale variations in the upward current sheets (downward flowing electrons) accelerate magnetospheric electrons which, when they reach the upper atmosphere, create the Auroras Borealis and Australis. In the high latitude ionosphere (or auroral zones), the Birkeland currents close through the region of the auroral electrojet, which flows perpendicular to the local magnetic field in the ionosphere. The Birkeland currents occur in two pairs of field-aligned current sheets. One pair extends from noon through the dusk sector to the midnight sector. The other pair extends from noon through the dawn sector to the midnight sector. The sheet on the high latitude side of the auroral zone is referred to as the Region 1 current sheet and the sheet on the low latitude side is referred to as the Region 2 current sheet.
The currents were predicted in 1908 by Norwegian explorer and physicist Kristian Birkeland, who undertook expeditions beyond the Arctic Circle to study the aurora. He rediscovered, using simple magnetic field measurement instruments, that when the aurora appeared the needles of magnetometers changed direction, confirming the findings of Anders Celsius and assistant Olof Hjorter more than a century before. This could only imply that currents were flowing in the atmosphere above. He theorized that somehow the Sun emitted a cathode ray,〔 out-of-print, full text online〕 and corpuscles from what is now known as a solar wind entered the Earth’s magnetic field and created currents, thereby creating the aurora. This view was scorned by other researchers, but in 1967 a satellite, launched into the auroral region, showed that the currents posited by Birkeland existed. In honour of him and his theory these currents are named Birkeland currents. A good description of the discoveries by Birkeland is given in the book by Jago.
Professor Emeritus of the Alfvén Laboratory in Sweden, Carl-Gunne Fälthammar wrote: "A reason why Birkeland currents are particularly interesting is that, in the plasma forced to carry them, they cause a number of plasma physical processes to occur (waves, instabilities, fine structure formation). These in turn lead to consequences such as acceleration of charged particles, both positive and negative, and element separation (such as preferential ejection of oxygen ions). Both of these classes of phenomena should have a general astrophysical interest far beyond that of understanding the space environment of our own Earth."
==Characteristics==
Auroral Birkeland currents carry about 100,000 amperes during quiet times and more than 1 million amperes during geomagnetically disturbed times. Birkeland had estimated currents "at heights of several hundred kilometres, and strengths of up to a million amperes" in 1908.〔 The ionospheric currents that connect the field-aligned currents heat up the upper atmosphere due to the finite conductivity of the ionosphere. The heat (also known as Joule heat) is transferred from the ionospheric plasma to the gas of the upper atmosphere, which consequently rises and increases drag on low-altitude satellites.
Birkeland currents can also be created in the laboratory with multi-terawatt pulsed power generators. The resulting cross-section pattern indicates a hollow beam of electrons in the form of a circle of vortices, a formation called the diocotron instability〔(Plasma phenomena - instabilities )〕 (similar to, but different from, the Kelvin-Helmholtz instability), that subsequently leads to filamentation. Such vortices can be seen in aurora as "auroral curls".〔(Pseudo-color, white-light images of curl formations in auroral arcs )〕
Birkeland currents are also one of a class of plasma phenomena called a z-pinch, so named because the azimuthal magnetic fields produced by the current pinches the current into a filamentary cable. This can also twist, producing a helical pinch that spirals like a twisted or braided rope, and this most closely corresponds to a Birkeland current. Pairs of parallel Birkeland currents will also interact due to Ampère's force law: parallel Birkeland currents moving in the same direction will attract each other with an electromagnetic force inversely proportional to their distance apart whilst parallel Birkeland currents moving in opposite directions will repel each other. There is also a short-range circular component to the force between two Birkeland currents that is opposite to the longer-range parallel forces.〔(Electromagnetic Forces )〕
Electrons moving along a Birkeland current may be accelerated by a plasma double layer. If the resulting electrons approach relativistic velocities (i.e. if they approach the speed of light) they may subsequently produce a Bennett pinch, which in a magnetic field causes the electrons to spiral and emit synchrotron radiation that may include radio, optical (i.e. visible light), x-rays, and gamma rays.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Birkeland current」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.